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Leading nonlinear interactions generated by waves externally superimposed on an 
axisymmetric jet are considered theoretically, and the results verified experimentally. 
The mean flow in the jet loses its axial symmetry whenever the jet is excited 
simultaneously by two different azimuthal modes of the same frequency. Subhar- 
monic resonance occurs in this flow whenever the conditions warrant such an 
occurrence, generating azimuthal modes which may not have been present otherwise 
in this flow. Some of these resonance conditions are explored. 

1. Introduction 
The linear aspects of the inviscid instabilities governing the amplification of wavy 

disturbances in an axisymmetric jet have discussed in the first part of this paper 
(Cohen & Wygnanski 1987). The model proposed predicts quite well the frequency 
of the most energetic waves, their azimuthal modes, the lateral distribution of their 
amplitudes and phases, and the development of the spectral distribution of the 
fluctuating velocities over short distances in the direction of streaming. 

The linear stability theory predicts that a continuous spectrum of waves corres- 
ponding to a broad band of frequencies (Michalke 1965) and a large number of discrete 
azimuthal modes (Plaschko, 1979; Cohen & Wygnanski 1987) are exponentially 
amplified with increasing distance from the nozzle. The unstable modes therefore 
attain amplitudes that are sufficiently high for the nonlinear terms arising in the 
equations of motion to become significant. The inclusion of the leading nonlinearities 
in the stability analysis alters the mean flow, which in turn affects the linear evolution 
of the disturbances; it may also be responsible for the creation of second-order 
interactions between two types of waves which may resonate at times (Kelly 1967), 
resulting in a rapid transfer of energy from one wave to another. The most common 
nonlinear interaction between two waves involves the fundamental wave and its 
various harmonic and subharmonic components, but a resonant interaction between 
waves having differing azimuthal modes may also occur and may be responsible for 
the generation of new modes that were not initially present. 

The modification to the mean flow resulting from the interaction between two 
azimuthal modes is analysed in detail and so are the resonance conditions responsible 
for the generation of new modes. The mathematical analysis is supplemented by 
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experiments carried out in a flow of air emanating from a circular nozzle. The 
experimental apparatus, the techniques of data acquisition, and the flow conditions 
are described by Cohen & Wygnanski (1987). 

2. Analysis 
2.1. Mathematical formulation of the leuding nonlineam'ties 

Let U be the velocity vector representing the flow in an axisymmetric jet having 
components U, V and W in cylindrical coordinates x(x ,  r ,  $). The momentum and 
continuity equations for incompressible, inviscid flow are 

( 2 . l a )  

(2.1 b)  

(2.1 c) 
aw aw waw wv aw i ap  
at ar r a$ r ax pra+, 
-+ v-+--+-+ u- = --- 

av aw au 
ar a$ ax r-+ V+-+r -  = 0, ( 2 . 1 4  

where P represents the pressure field and p is the fluid density. Assuming that the 
mean flow, which is neither divergent nor swirling [i.e. it has velocity components 

= ( Uo(r), 0, O ) ] ,  is subjected to two small disturbances simultaneously, one may 
express the flow-field vector q by the following expansion: 

q ( x ,  r, 4, t )  = Qo(r) +el1 q 1 1 ( 2 ,  r ,  $ 9  t )  +eiaqia(Z, r,  $ 9  t)+eaqa(z, r ,  $3 t )  +O($), (2 .2)  
which can be rewritten in scalar form as follows: 
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where Bll is the frequency of wave 11, m,, is the azimuthal mode number, and all 
is a complex constant whose real part (allr) gives the wavenumber and whose 
imaginary part (alli) determines the growth rate of wave 11. The radial distribution 
of the amplitude vector Q,,(r) is given by Q,, = [U,,(r), V,,(r), W,,(r), Pll(r)]. The 
asterisk represents the complex-conjugate term ; the superscripted plus and minus 
signs represent waves running in the positive and negative directions of the azimuthal 
angle. Expressing the exponential part of the disturbance by E, 

Ec*) = exp[i(ax-@+m$)], (2.6) 

the vector qll, and similarly qll and qB, may be written as 

Qii(x, r,  9, t )  = Q:i(r) EL + QTi(r> E;; + (*), 
Qi&, r ,  $9 t )  = Q:&r) G + Qdr) E i  + (*I, 

(2.7a) 

(2.7b) 

qa(x, r ,  9, t) = Qt(r) G+ Qh(r) K + ( * ) a  
( 2 . 7 ~ )  

When (2.3) is substituted into (2.1) and the linear superposition property is used 
to order 6, the following equation is obtained: 

a - a  -+uo- r at ax 
a 
ax 
- 0 

a 
ar 

a - a  
O at oax 

Lp(q:l) = a - a  i a  
0 O at oax ra+ 

- 0 -+u - 

-+u- -- 

where Lp is a linear partial differential operator applied to  I:,, and the ordinary 
derivative with respect to r is denoted by a prime. The equations for qF1, q:*, qT1, and 
qt and their complex-conjugate vectors are the same. Substitution of (2.5) into (2.8) 

1 0 

= 0, (2.9) 

where L0(Q:,) is the linear ordinary differential operator applied to QA and cll is 
defined by cll = jll/all. 

The equation for Q:: is derived by taking the complex-conjugate of (2.9), while 
reversing the sign of m,, in (2.9) gives the equation for Q,. 
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the pressure component c l ( r ) ,  as was done by Plaschko (1979) : 
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Equation (2.9) can be reduced to a second-order ordinary differential equation for 

(2.10) 

The equation to order e2 is given by 

where all the terms contained in vector R are the products of the linear solutions, 
i.e. the products of vectors qll and q12 with themselves and the cross-product of qll 
and q12 with one another. Since the homogeneous part of (2.11) is the same as (2.8), 
the homogeneous solution to (2.1 1)  will add only a correction of order e to the solution 
given by (2.5). Therefore, only the particular solution of (2.11) is considered. 
Moreover, since L, is a linear operator, one checks for particular solutions com- 
sponding to each term of the right-hand side of (2.11) separately. In the discussion 
that follows, the radial dependence of the particular solution is not considered and 
therefore only the representative elements of vector R, showing its dependence on x, t 
and # are analysed. These elements are labelled as R.H.S. in (2.12). 

Lp(q2) = R,  (2.11) 

R.H.8. = T? ~ ~ P ~ ~ r ~ ~ , , + ~ , 2 ~ ~ - ~ 8 1 1 + B 1 2 ~ ~ + ~ ~ 1 1 + ~ , 2 ~ 9 1 ~  

+T$ eXP{i[(~,,--dl,*,)5-((B,1-812)tf ( ~ 1 1 - ~ 1 2 ) # 1 }  

+T$ exP{i[(a11+~12)x- ~ 8 1 1 + 8 ~ 2 ~ ~ + ~ ~ , 1 - ~ , 2 ~ # 1 ~  

+ exp{i[(a,,--a,*,) 2- (P11-/912) t+  ("11+m,,) #I)+ (*I, (2 .124  

where T: , Tzf , T$ , and T$ are functions of the radial coordinate and the eigenvalues 
a,,, P15 and m15, j = 1 , 2 ,  while the f signs represent the appropriate azimuthal 
directions. By replacing subscript 12 with 11 in (2.12a) one obtains a term 
representing a second-order self-interaction of a single wave. 

Whenever the disturbances are excited artificially, ( 2 . 1 2 ~ )  is reduced to 

R.H.S. = Tl ~ ~ P ~ ~ ~ ~ ~ , 1 + ~ , 2 ~ ~ - ~ 8 1 1 + 8 1 2 ~ ~ +  ( m 1 1 + m 1 2 ) 9 1 )  

+ T 2  ~ ~ P ~ ~ ~ ~ ~ , , - ~ , * , ~ ~ - ~ P , l - P l 2 ~ ~ + ~ ~ , , - ~ , 2 ~ 9 l ~ .  . (2.12b) 

2.1.1. Mean-wave interaction 
Suppose that the jet is excited by two waves having the same frequency 

Pll = Dl2 = 8. Consequently, phase-averaging of (2.11) or, equivalently, considering 
only the particular solution associated with the mean part (RSM) of (2.12b) yields 

(RHS) = RSM = T&; P, a,,, 0112, m,,, m 1 2 )  

~ex~[-(~,,,,+ai,12)~+i(a,,,,--a,,,2)z+i(m,,--m,2)#1, (2.13) 

where T2 is a complex function of the radial coordinate and the eigenvalues P, a,, and 
ml,d - - 1,2. We shall now consider the following cases: (i) exciting a single mode; (ii) 
generating standing waves; and (iii) exciting two waves having the same frequency. 

(i) Exciting a single mode. In this case, the eigenvalues of wave 11 are the same 
as those of wave 12, and therefore (2.13) reduces to 

RSM = T2(r; P, a, m) exp(-2aix). (2.14) 

Since the right-hand side of (2.14) is independent of the azimuthal coordinate 9, 
one concludes that the azimuthal structure of the mean field of an axisymmetric jet 
remains axisymmetric when the jet is subjected to a single mode of excitation. 
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(ii) Generating standing waves. Standing waves are generated by exciting two waves 

(2.15) 

using the following relations : 

/3,, = /3,, = /3; all = a12 = a; m,, = -m12 = m. 

In  this case, (2.13) reduces to 

Substituting 

where IT,I is the modulus and q50 is the phase of the complex function T,, gives 

RSM = T2(r; /3, a, m) exp[-2a1x+2imq5]. 

T2(r;/3, a, m) = IT,(r) I exp [i$o(r)11 

(2.16) 

(2.17) 

RSM = exp [-2aiz] IT2(r)I exp [i(2mq5++,(r))]. (2.18) 

Since the added ‘mean flow’ has to be real, the real part of (2.13) is considered: 

RSMrea, = ~ X P  [-2aixI IT2(r)l cos (2m$+q5o(r))* (2.19) 

The particular solution associated with (2.19), and therefore with each velocity 
component of the added mean flow resulting from the excitation in which standing 
waves are generated, should vary like cos (2mq5). This variation has a phase shift q50 
depending on radial position. The amplitude of the azimuthal cosine shape grows with 
downstream distance and depends on the radial position as well. 

(iii) Exciting two waves having the same frequency. In  investigating this case, the 
limit in which the ratio between the planar momentum thickness 6 and the jet radius 
R+ may be assumed small is considered first. Since for this limit all modes of order 
unity have identical solutions (Cohen & Wygnanski 1987), (2.13) can be reduced to 

(2.20) 

Thus, providing that the effective azimuthal mode number 2m appearing in (2.18) 
is replaced by the difference between the two azimuthal mode numbers mll - m,,, in 
(2.20), the two cases are identical. However, the restriction to even azimuthal shapes 
appearing in (2.18) no longer applies; ‘odd’ shapes are possible when m,,-m,, is an 
odd integer. 

RSM= T2(r; 8, a, m,,, ml,) exp[-22cc,2+i(mll-m12)q51. 

In general, when (2.17) is used, the real part of (2.13) can be rewritten as 

RSMrea1 = ~ X P  [-(ai, 11+ai, 1s)xI IT2(r)l cos[(ar, 11-ar, 1 2 ) ~ +  (mn-m12) d++o(r)I 

= exp [- (ai, 11 + ai, 1%) X I  IT,(r)l {COB ((m11- m12) 4) 
x [COS ($o(r)) COB ((ar, l l - a r ,  le)x)-sin ($o(r)) 

x sin ( (ar ,  n - a r ,  18) x)I-sh ((m11-m12) $1 [COS (q5o(r)) 

x~in((ar,ll-ar,,,)~)+sin($o(r)) ~os((ar,11-ar,12)~)1}. (2.21) 

The resulting azimuthal shape of the added mean flow corresponding to (2.21) has the 
form of cos (mll - m,,) $. The variation of this ‘cosine shape ’ with downstream and 
radial coordinates is essentially the same as in case (ii). However, because of the new 
x-dependence arising from the difference a=, 11 -ar, ,,, which serves as an 2-dependent 
phase shift, the mean azimuthal structure at a given radial position might seem to 
‘rotate ’ in the direction of streaming. 

2.1.2. Resonance conditions 
When one of the exponentials given on the right-hand side of (2.12) has the same 

time and spatial dependence as the homogeneous solutions of Lo(Q,,) = 0 or 
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L,(Q12) = 0, the particular solution associated with this exponential grows linearly 
with downstream distance and with time. This particular solution is considered to be 
'secular' since it invalidates (2.2) at streamwise distances and times proportional to 
cl. These secular terms are responsible for the resonant nonlinear interaction 
between the two waves. 

If qin represents a wave produced by the interaction between waves qll and qln 
which grows in a secular manner, the eigenvalues associated with qin must satisfy 
one of the following resonance conditions : 

and their complex-conjugate relations. 

3. Experimental demonstration of the leading nonlinear interactions 
3.1. The distortion of the mean velocity$eld 

Exciting the jet at a single mode and frequency does not destroy the axial symmetry 
of the mean motion, which remains independent of the azimuthal angle q5 (equation 
2.14). To verify this statement, the jet was excited in the axisymmetric mode (m = 0) 
using a single woofer located at the bottom of the settling chamber, and independently 
in modes m = + 1 and m = + 2 with the aid of the eight acoustic drivers located near 
the nozzle [see Cohen & Wygnanski 1987 for details]. The exhaust velocity of the jet 
U, was 8 m/s and the frequency of the excited wave was 204 Hz, resulting in a local 
Strouhal number (st, = Ff e/ U,, where F' represents the frequency of the forced 
wave) of 0.03 at z / D  = 0.65. This value of the local Strouhal number guarantees that 
the excited wave is within the last stages of amplification (according to the linear 
stability theory) and therefore most susceptible to  nonlinear interactions. Measured 
mean velocity profiles &(r, q5) corresponding to three different types of excitation 
are shown in figure 1. In  each case, eight profiles, taken at eight azimuthal locations 
45' apart, are plotted. Figure 1 (a, b) demonstrates that the axisymmetric structure 
of the jet is maintained when it is subjected to a single mode of excitation, be i t  
axisymmetric or helical, since all eight profiles collapse onto a single curve. Whenever 
two modes of excitation were applied simultaneously, the axisymmetric shape of the 
mean velocity was destroyed, as predicted in (2.20) (figure Ic). (Note that all the 
profiles shown in figure 1 (c) were matched at the centre of the shear layer, i.e. at the 
half-velocity point.) 

The cosine dependence [cos q5(mll - m12)] of the azimuthal variation of the added 
mean flow was verified by subjecting the jet to two waves of the same frequency but 
different mode numbers m,, and mln. Since O/R+ R 0.04, the assumptions made in 
deriving (2.20) are applicable (i.e. e/Ri 4 1). The circumferential variation of the 
added mean flow was obtained by subtracting the azimuthally averaged mean 
velocity from the local mean velocity at each radial location. The resulting circum- 
ferential configuration was then compared to the suitable cosine shape by using the 
Fourier decomposition. The triangular symbols shown in figure 2 (a) represent the 
data points obtained while the jet was excited by modes 0 and + 1. Six sets of data 
points corresponding to six different radial positions were measured and plotted. The 
circumferential variation of each set, which contains eight data points corresponding 
to eight azimuthal stations, is compared with the predicted cosq5 shape, shown by 
a solid line. When the jet was excited at modes 0 and + 2 simultaneously, the results 

. 
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FIQUBE 1. 
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(r  - q / e  
Azimuthal similarity of mean velocity profiles measured at x / D  = 0.65, with forcing 

frequency of 204 Hz and mode number: (a) 0; (b)  1 ; (c) O+ 1. 
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(r  - q / e  
Azimuthal similarity of mean velocity profiles measured at x / D  = 0.65, with forcing 

frequency of 204 Hz and mode number: (a) 0; (b)  1 ; (c) O+ 1. 

4 (degrees) 
FIQURE 2. Azimuthal variation of the normalized additional axial mean velocity profiles at 
x / D  = 0.65, I$ = 204 Hz; (a) A, m = 0+1; -, predicted C O S ~  shape; (b )  0, m = 0+2; - 
predicted cos 24 shape. 
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(represented by square symbols in figure 2b)  have to be compared with the cos2$ 
shape. (Note that the first point at $ = 0' is repeated again at $ = 360O.) 

Contours representing the azimuthal distribution of the streamwise component of 
the mean velocity for various modes of excitation are plotted in figures 3 and 4. In  
order to calculate these contours, the following equations were solved: 

Vo(r) = 0.5 { 1 + tanh [3(:-6)]}; 1 
um(r, $) = -A(r)  COST@; I 

where the total mean velocity at  a given distance from the nozzle [ u , ( r ,  $)] represents 
the superposition of the basic profile, uo(r) ,  and the perturbation u,(r, $), resulting 
from the interaction of helically excited waves. The basic profile used was suggested 
by Michalke (1971). The perturbation velocity is given by a cosine function, where 
n stands for the difference between the mode numbers of the excited waves. The 
dependence of the perturbed profile on the radial coordinate relative to the azimuthal 
cosn$ variation is neglected; therefore A(r) ,  whose magnitude is related to the 
amplitude of the excited waves, is taken to be a constant. A straightforward algebraic 
procedure for a given mean velocity contour level, say Uac, leads to the following 
equations : 

r 
- = 0.5 [ -g + (g' +4):], 
R! I 

I 

1+2(Ua,-0.5)+2A COST@ 
1 - 2( U,, -0.5) - 2A cos T@ 

Four contour plots, calculated for n = 1,2,  3 and 4, are shown in figure 3. For each 
value of n, two contours are plotted. The solid curve represents a relatively low level 
of excitation, while the dashed line corresponds to a disturbance having a higher 
amplitude. In each case, the solid curves resemble a canonical configuration (a circle 
whose centre does not coincide with the nozzle, an ellipse, a triangle and a square) 
and the dashed lines represent a combination of the number of n of lobes. In order 
to accentuate the azimuthal structure in figure 3 a circle of radius 0.9*Rmi, was 
subtracted from each contour shown in this figure. Rmin represents the minimum 
distance between the original contour and the centre of the jet. 

A comparison between the computed contours and experimental results is made 
in figure 4. The dashed circles shown do not correspond to the dimension ofthe nozzle; 
they are drawn to accentuate the azimuthal dependence of the mean velocity. The 
data shown in figure 4 (a, b) are replotted from figure 2 (a, b). The data points shown 
in figure 4(c, d) are taken from the dissertation of Strange (1981), while the solid 
lines represent the solutions to (3.2). In  this case, the jet was subjected to the standing 
waves generated by a combination of modes given by m = +2  and the data were 
taken at z / D  = 2 (figure 4c) and x / D  = 4 (figure 4d). Since the waves are strongly 
amplified in this range of downstream distances, the contours shown in figure 4(d) 
correspond to a higher amplitude of excitation than the ones shown in figure 4c. 
Strange found that at z / D  = 12, the azimuthal distribution of mean velocity regained 
its natural axisymmetric shape, probably because of the decay of the excited waves 
relative to the growing importance of random fluctuations. 
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RGURE 3. Theoretical iso-velocity contour plots, solutions of equation (3.2) with arbitrary scale 

- ,A=0.15;--- ,0.4; (d)n=4;- ,A=0.1;--- ,0 .4 .  
and U,, = 0.5: (a) ?t = 1 ;  -, A = 0.2; ---, 0.45; (6) ~t = 2; -, A = 0.2; ---, 0.4; (C) It = 3; 

FIGURE 4. Iso-velocity contour plots for forced jet with arbitrary scale. (a) 4, m = 0+1, 
Fr = 204 Hz, x / D  = 0.65, U,, = 0.5; -, theoretical result (solution to equation (3.2)), A = 0.45; 
(6) 4, m = 0+2, F, = 204 Hz, x / D  = 0.65, U,, = 0.5; -, theoretical result, A = 0.4; (c) 4, 
m = + 2  (Strange 1981), x / D  = 2, U,, = 0.2; -, theoretical result, A = 0.11; (d) 4, m = f 2  
(Strange 1981), x / D  = 4, U,, = 0.2; -, theoretical result, A = 0.18. Dashed line represents an 
arbitrary circle for display purposes. 

3.2. The generation of resonant interactions 
Resonance conditions are demonstrated experimentally by subjecting the jet to one 
or two periodic oscillations whose frequency and azimuthal mode number can be 
carefully controlled. For externally excited flow, the resonance conditions given in 
(2.22) are reduced to 

Bin = Bii + B I Z ;  a in = a11 +a,,;  mtn = mi1 +mi23 (3.3a) 

Bin = B i i - B r e ;  ain = a1i -G;  mtn = mii-mi2- (3.3b)  
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When one of the two disturbances is the subharmonic of the other one, 
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Pf = 811 = 2$12 = 28,, (3.4) 

where the subscript f represents the fundamental wave while s represents its 
subharmonic. The generation of a new subharmonic wave is possible according to 
(3.3b) provided A n  = Bw (3.5a) 

a , i n  = ar , f (A)-ar ,s (PJ,  (3.5b) 

mi, = mf-m,, (3.5c) 

%,in = ai,f+ai,s- (3 .54  

The conditions represented in (3.5a-c) are associated with the periodic part of the 
wave, whereas the condition (3 .54  is associated with its amplitude. In  the case of 
a slightly positive rate of growth, the amplitude of the wave can be redefined to 
include this growth rate, emphasizing the importance of the periodic conditions in 
comparison with the growth-rate condition. 

When the excited waves are axisymmetric, the wave resulting from the resonant 
interaction is also axisymmetric [equation (3.5c)l. Equations (3.5a, b) can then be 

(3-6) combined to yield 
CP! = CPS’ 

where cp is the phase velocity of the wave defined by cp = @/ar. The condition 
inherent in (3.6) suggests that the fundamental wave will interact with its subhar- 
monic, provided both waves propagate at the same phase velocity, allowing them sufficient 
time to interact and exchange energy. 

The significance of (3.6) is demonstrated in the following two experiments. The 
phase velocity and the spatial growth rate, calculated by the linear stability theory 
based on the unperturbed mean velocity profile existing at z / D  = 0.75, is shown in 
figures 5(a) and 5(b ) ,  respectively. The solid line represents the solution for the 
axisymmetric mode (m = 0), while the dashed line corresponds to the helical mode 
(m = 1). At a radial position at which the mean velocity was reduced to f of its 
centreline value, power spectra of the streamwise component of velocity were 
measured. The spectral distribution in the absence of external excitation is shown 
in figure 6(a) .  The spectrum shown in figure 6(b) corresponds to the case in which 
the jet waa subjected to an axisymmetric periodic disturbance at a frequency of 
288 Hz. The emergence of the band of frequencies (figure 6b) centred around the 
subharmonic frequency (144 Hz), in addition to the sharp peak in the spectrum at 
the excitation frequency (288 Hz), was predicted with the resonance conditions since 
the phase speeds of both waves are almost identical (figure 5a). Conversely, strong 
excitation of the jet at an amplitude 100 times larger than the background but at 
a frequency of 144 Hz (figure 6c) did not result in any significant response at the 
subharmonic frequency of 72 Hz. The absence of a response is due to the difference 
in the phase velocities of the two waves (figure 5a), which did not fulfill the condition 
prescribed in (3.6). 

The possibility that resonant conditions will generate an azimuthal mode not 
existing in the flow (equation ( 3 . 5 ~ ) )  increases the range of probable nonlinear 
interactions. The results of an experiment exploring an intermodal resonant inter- 
action is summarized in table 1. The jet was subjected to two periodic disturbances, 
a fundamental wave having a forcing frequency of F, = 288 Hz and an azimuthal 
mode number m, = - 1, and a subharmonic wave with F, = 144 Hz and m, = 0. 

The first line in table 1 shows the azimuthal amplitude distribution when the jet 
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0 0.1 0.2 0.3 
PI u, 
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FIQIJRE 5. Eigenvalues calculated from parallel stability theory. U, = 810 cm/s, x / D  = 0.75, 
e / D  = 0.026. Azimuthal mode: -, m = 0 ;  ---, 1. (a) Phase velocity; (b) Spatial growth rate. 

was subjected to a single disturbance. In  both caaes, where the jet was excited with 
a fundamental wave (288 Hz) or with a subharmonic wave (144 Hz), the largest 
component of the resulting azimuthal structure of the disturbance came from the 
excited mode number, i.e. m = - 1 for Ff = 288 and m = 0 for Fs = 144 Hz. When the 
jet was subjected to both disturbances simultanewsly, the azimuthal mode content 
of the amplitude distribution of the subharmonic wave was changed significantly, as 
shown in the second line of table 1. 

The net gain of the subharmonic amplitude at m = - 1 can be predicted theor- 
etically from the resonance conditions (equation (3.5)). This is demonstrated in the 
third line of table 1, where the amplitude distribution corresponding to the single 
excitation is subtracted from that of the combined excitation, resulting in a net gain 
of the subharmonic disturbance in the mi, = mf-m, = - 1-0 = - 1 mode, which is 
equivalent to the excitation level at the m = 0 mode. 

The modal decomposition of the waves demonstrated in table 1 enables one to 
distinguish which mechanism is responsible for the growth of the amplitude of a 
disturbance. The case illustrated in figure 6 was explained by the nonlinear 
interaction between the two waves whenever their phase velocities are matched. This 
case might have been partially explained by the linear stability theory; the 
subharmonic wave associated with figure 6 ( b )  approximately at ita maximum linear 
amplification rate (figure 5b) ,  while the amplification rate of its subharmonic (figure 
6c) is much lower. Such an explanation is not possible when one subdivides the results 
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I I I 1 I I l 1 1 l  I I 8 1 1 1 1 1  

10 100 lo00 

Frequency (Hz) 
RGURE 6. Subharmonic resonance: x / D  = 0.75, r = R,.,,,. (a) natural jet; (b) excitation at 

F, = 288 Hz and m = 0; (c) excitation at Ff = 144 Hz and m = 0. 

Amplitude distribution (arbitrary scale) 

F, = 144 Hz; m, = 0 F, = 288 Hz; m, = - 1  

m 0 +1 - 1  0 +1  -1  

Single 23.0 1.9 1.4 1.17 10.0 48.0 
Combined 24.2 8.8 22.3 4.1 10.7 47.5 
Gain 1.2 8.0 21.0 3.0 0.7 -0.5 

TABLE 1.  Subharmonic resonance with mf = - 1 and m, = 0 

into azimuthal modes, as demonstrated in table 1. The linear stability theory cannot 
differentiate between m = 1 and m = - 1 because the linear stability equation and 
the corresponding boundary conditions depend on the square of the azimuthal mode 
number m. Therefbre, the fact that only the subharmonic wave at  m = -1 gained 
most of its energy (table 1) can only be explained by the nonlinear interaction between 
the two disturbances. 

Another example of subharmonic resonance is demonstrated in table 2. In  this case, 
the resonance conditions given by (3.5) result in the generation of a new subharmonic 
wave running in a counterclockwise direction [mi, = mf-m, = 0 - (- 1) = + 11, 
whereas all of the input waves did not contain such a modal component (table 2, top 
line). The rapid generation of a subharmonic disturbance by a nonlinear resonance 
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Amplitude distribution (arbitrary scale) 

Fs = 144 Hz; m, = -1 F' = 288 Hz; 'mf = 0 

Tn 0 +1 -1  0 +1 -1  

Single 1.6 2.25 43.9 40.8 8.9 8.4 
Combined 4.6 33.7 39.8 38.5 3.5 6.0 
Gain 3.0 31.5 -4.0 -2.0 -5.4 -2.4 

TABLE 2. Subharmonic resonance with mr = 0 and m, = - 1 

10 100 lo00 
Frequency (Hz) 

FIGURE 7. Resonance interaction between two axisymmetric wavetrains: x ~ D  = 0.75, r = R,.,p,. 
(a) Weak excitation at 288 Hz; (a) strong excitation at 192 Hz; (c) combined excitation. , 

may be synonymous with 'vortex pairing ' for axisymmetric modes, which has been 
observed experimentally by Winant & Bmwand (1974). 

Other kinds of nonlinear interactions are also possible (see Kelly 1967), aa is 
demonstrated in figure 7. The spectral distribution of the axial velocity component 
for a jet subjected to an axisymmetric periodic disturbance at a frequency of 288 Hz 
is shown in figure 7(a).  The level of excitation is so low that the spectral peak 
corresponding to the excitation frequency does not exceed the maximum peak in the 
spectrum occurring at 180 Hz, and the spectral distribution is almost identical with 
the one prevailing in an unexcited jet and given in figure 6(a) .  The spectral 
distribution corresponding to a strong excitation of an axisymmetric mode at a 
frequency of 192 Hz is shown in figure 7 ( b ) .  The amplitude of the subharmonic 
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frequency, 96 Hz, did not significantly increase, because of the dispersion in phase 
velocities of both waves. However, when both excitations corresponding to figure 
7 (a, b) were combined, the resulting spectral distribution indicates a significant gain 
in the amplitude associated with the difference frequency of 96Hz, fulfilling the 
resonance conditions outlined in (3 .3b) .  

4. Concluding remarks 
Instability modes in an axisymmetric jet are influenced by two lengthscales 

governing the mean flow on which these instabilities develop. The first is the local 
width of the shear layer, while the second is the diameter of the jet column limiting 
the number of evolving azimuthal modes. These two lengthscales govern the 
wavelengths and the most amplified instabilities and therefore also control the 
leading nonlinear interactions among them. Since in most laboratory jets the area 
ratio between the cross-section of the plenum chamber and the nozzle is large, only 
planar disturbances are emanating from the nozzle. The axisymmetric mode, 
therefore, plays a dominant role in the initial evolution of the jets so it is not 
surprising that large coherent structures in this configuration are still represented by 
vortex rings. 

When the jet is excited by different azimuthal modes having the same frequency, 
the mean flow is distorted and the contours of mean velocity can no longer be 
represented by concentric circles. The actual shape of the velocity contours depends 
on the difference between the excited mode numbers and the local amplitude of the 
wave. Some of the predicted velocity distributions were experimentally observed 
(also see Strange 1981). 

Whenever two disturbances attain a sufficiently high amplitude, the time- 
dependent nonlinear interaction between them is no longer negligible and a transfer 
of energy may occur from one wave to another, generating at  times a third wave 
which was previously non-existent. The resonant conditions under which two 
disturbances can interact in an axisymmetric shear layer were predicted and 
demonstrated experimentally. The dominant interactions between two waves occur 
when one of the waves is a subharmonic of the other. Both waves must propagate 
downstream at the same speed (i.e. be non-dispersive) to allow sufficient time for the 
transfer of energy to take place. The large variety of nonlinear interactions possible 
in an axisymmetric jet mandate a careful analysis of many recessive linear modes 
which may be strongly amplified by the nonlinear process. 
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